TrellOss®-A Porous Ti Interbody System

A new foundation for growth.

System Features

A 3D printed titanium interbody platform featuring a scaffold structure with 70% porosity and a 7 micron roughened surface topography to foster a cellular relevant environment for adhesion and bone ingrowth.1

Porosity

  • Aligned pore structure allows optimal fluoroscopy when assessing fusion post-operatively.
  • Open architecture with 70% porosity including varying pore sizes of 300, 500, and 700 microns that mimic cancellous bone allowing for a conducive environment for cellular activity.1,5,6,7

Structure

  • Lock sleeve insertion prevents loosening upon impaction.
  • Scaffolding structure provides additional surface area 2,3 and an elastic modulus similar to PEEK.8

Texture

  • Anti-migration teeth flank the lateral walls.
  • 7 micron surface texturing enhances the wicking nature9 and creates an environment for potential cellular adhesion.2,3,4

Sterile Packed

Implants are sterile packed to reduce risk of contamination and hospital reprocessing costs.

Options

  • 2 lumens for graft packing and containment.
  • Distractor inserter option.

Specifications

  • Footprint

    24 x 32, 27 x 36.

  • Height*

    8 mm–18 mm, 10 mm–20 mm, 12 mm–20 mm.

    *2 mm increments.

  • Lordosis

    8˚, 14˚, 20˚.

Resources

Brochures & Surgical Technique Guides

TrellOss®-A Porous Ti Interbody System Brochure

ZV0829 REV A 03/23 (Global)Download PDF

TrellOss®-A Porous Ti Interbody System Surgical Technique Manual

ZVINST0068 REV A 03/23 (Global) Download PDF

Additional Information

  • Contact Us

    USA: 720-894-9016

    To submit a complaint, please email SpineComplaints@highridgemedical.com

    10225 Westmoor Dr. Westminster, CO 80021 USA

    To obtain a copy of the current Instructions for Use (IFU) for full prescribing and risk information, please call 720-894-9016.

  • References

    1. McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J 2018;18(7):1250-1260. 
    2. Olivares-Navarrete R, Hyzy SL, Slosar PJ et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine 2015;40(6):399 -404. 
    3. Olivares-Navarrete R, Hyzy SL, Gittens RA, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J 2013;13(11):1563 -70.
    4. Rao PJ, Pelletier MH, Walsh WR, et al. Spine Interbody Implants: Material Selection and Modification, Functionalization and Bioactivation of Surfaces to Improve Osseointegration. Orthop Surg 2014;6:81 -89.
    5. Ponader S, von Wilmowsky C, Widenmayer M, et al. In vivo performance of selective electron beam-melted ti-6al-4v structures. J Biomed Mater Res A 2010;92A:56 -62.
    6. Li JP, Habibovic P, et al.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 2007;28:2810.
    7. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474 -91. 
    8. Permeswaran, V., (2019) Elastic Modulus Characterization of Porous Titanium TrellOss™ Structure, 2922.1-GLBL-en-REV1219, Zimmer Biomet Spine, Westminster, CO 
    9. Permeswaran, V., (2019) Measuring the Wicking Nature of Porous Titanium TrellOss™ Structure, 2921.1-GLBL-en-REV1219, Zimmer Biomet Spine, Westminster, CO
    10.  
  • Legal Manufacturer

    Nexxt Spine, LLC

    14425 Bergen Blvd, Suite B

    Noblesville, IN 46060